首页> 外文OA文献 >ab initio Electronic Transport Model with Explicit Solution to the Linearized Boltzmann Transport Equation
【2h】

ab initio Electronic Transport Model with Explicit Solution to the Linearized Boltzmann Transport Equation

机译:从头算解决的ab initio电子传输模型   线性化Boltzmann输运方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate models of carrier transport are essential for describing theelectronic properties of semiconductor materials. To the best of our knowledge,the current models following the framework of the Boltzmann transport equation(BTE) either rely heavily on experimental data (i.e., semi-empirical), orutilize simplifying assumptions, such as the constant relaxation timeapproximation (BTE-cRTA). While these models offer valuable physical insightsand accurate calculations of transport properties in some cases, they oftenlack sufficient accuracy -- particularly in capturing the correct trends withtemperature and carrier concentration. We present here a general transportmodel for calculating low-field electrical drift mobility and Seebeckcoefficient of n-type semiconductors, by explicitly considering all relevantphysical phenomena (i.e. elastic and inelastic scattering mechanisms). We firstrewrite expressions for the rates of elastic scattering mechanisms, in terms ofab initio properties, such as the band structure, density of states, and polaroptical phonon frequency. We then solve the linear BTE to obtain theperturbation to the electron distribution -- resulting from the dominantscattering mechanisms -- and use this to calculate the overall mobility andSeebeck coefficient. Using our model, we accurately calculate electricaltransport properties of the compound n-type semiconductors, GaAs and InN, overvarious ranges of temperature and carrier concentration. Our fully predictivemodel provides high accuracy when compared to experimental measurements on bothGaAs and InN, and vastly outperforms both semi-empirical models and theBTE-cRTA. Therefore, we assert that this approach represents a first steptowards a fully ab initio carrier transport model that is valid in all compoundsemiconductors.
机译:载流子传输的准确模型对于描述半导体材料的电子特性至关重要。据我们所知,当前遵循玻耳兹曼输运方程(BTE)框架的模型要么严重依赖实验数据(即半经验),要么利用简化假设,例如恒定弛豫时间近似(BTE-cRTA) 。尽管这些模型在某些情况下提供了宝贵的物理见解和传输特性的准确计算,但它们通常缺乏足够的准确性-尤其是在捕获温度和载流子浓度的正确趋势时。通过明确考虑所有相关的物理现象(即弹性和非弹性散射机制),我们在这里提出一种用于计算n型半导体的低场电漂移迁移率和塞贝克系数的通用传输模型。我们首先根据从头开始的特性(如能带结构,态密度和极光声子频率)重写弹性散射机制速率的表达式。然后,我们求解线性BTE以获取对电子分布的扰动-由主要的散射机制导致-并使用它来计算总体迁移率和塞贝克系数。使用我们的模型,我们可以准确计算化合物n型半导体,GaAs和InN,温度和载流子浓度的各种变化范围的电传输特性。与在GaAs和InN上进行的实验测量相比,我们的完全预测模型可提供高精度,并且大大优于半经验模型和BTE-cRTA。因此,我们断言该方法代表了朝着从头开始的完全从头开始的载流子传输模型的第一步,该模型在所有化合物半导体中均有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号